

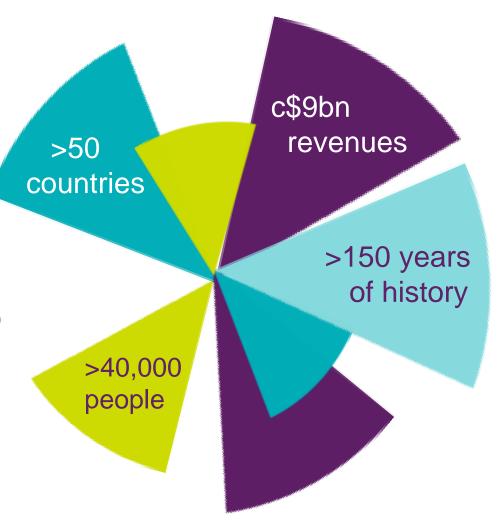
ANIMP Conference: Renewables, Grid, Energy Storage, 2 July 2015

Agenda

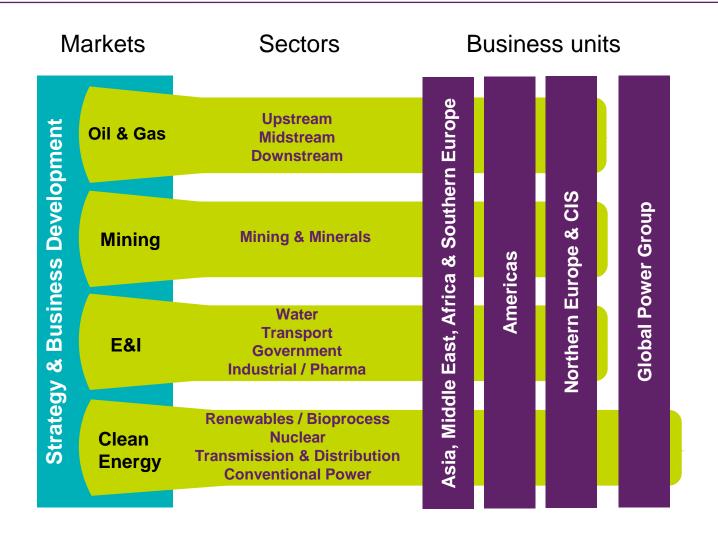
- ► Introduction and Plant overview
- ► Technology review
 - Gasification
 - Tar removal
 - Syngas conditioning
 - Methanation
- **▶** Case study
- **▶** Conclusions

Agenda

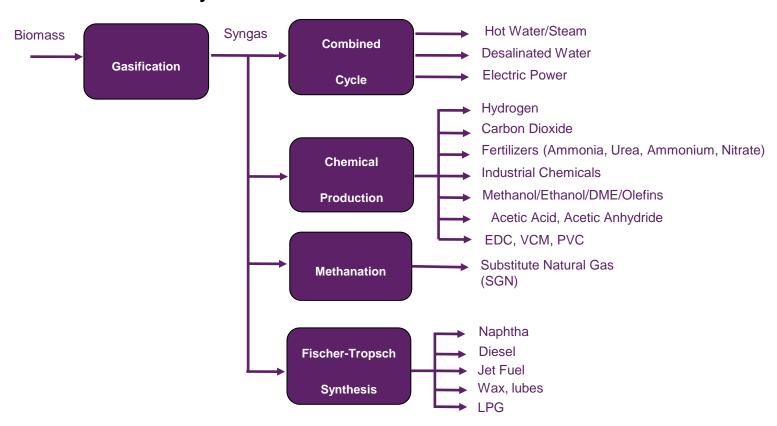
► Introduction and Plant overview


- **►** Technology review
 - Gasification
 - Tar removal
 - Syngas conditioning
 - Methanation
- Case study
- **▶** Conclusions

Who we are

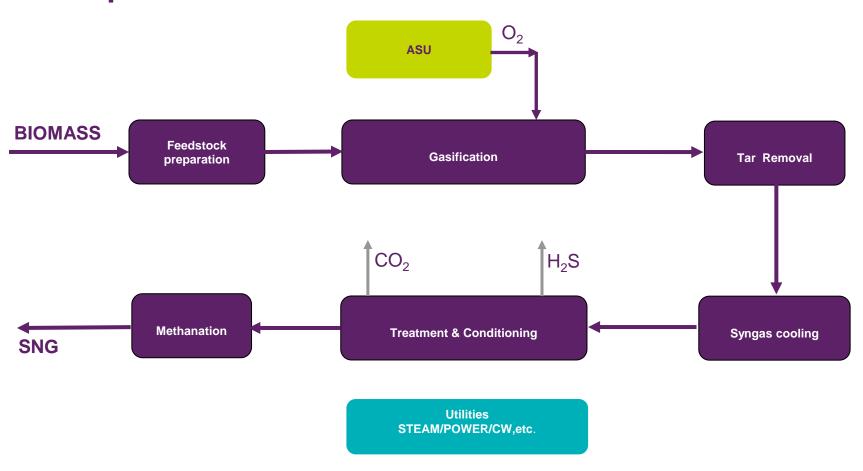

- ► Listed on
 - London Stock Exchange (AMFW)
 - New York Stock Exchange (AMFW)

Amec Foster Wheeler


Four business units, operating across four key markets

Why biomass gasification? Why SNG?

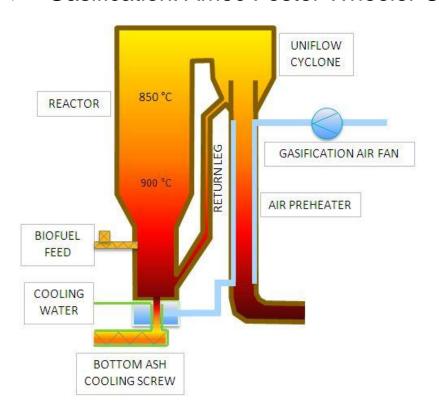
Introduction: why biomass and SNG?



- SNG: a practical pathway to final users
 - Easy connection of production plants to existing NG networks

Plant overview

Main process blocks



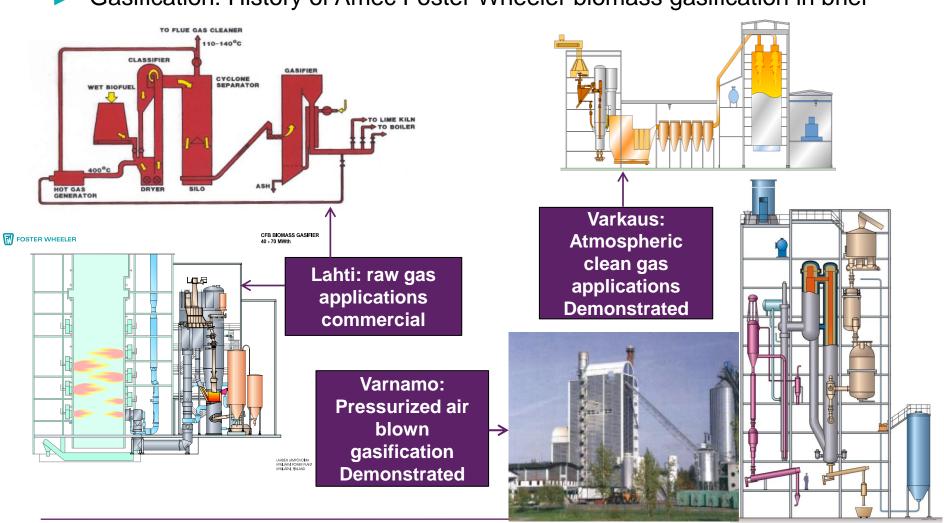
Agenda

- ► Introduction and Plant overview
- ► Technology review
 - Gasification
 - Tar removal
 - Syngas conditioning
 - Methanation
- Case study
- **▶** Conclusions

Gasification: Amec Foster Wheeler CFB Gasifier

- ▶ 11 gasifiers built in 1981-2008
- Readiness to offer plants for over 150
 MWth air-blown applications for various wood and waste based fuels
- Readiness to offer pressurized oxygensteam blown gasifiers up to ~300 MW for biorefinery applications with wood based fuels
- Process conditions according to fuels and applications

Long History (originally developed end 70's/beginning 80's)


Recent commercial applications

Developments always in progress

Gasification: History of Amec Foster Wheeler biomass gasification in brief

10

- Gasification: Varkaus 12 MW_{th} O₂-H₂O Demo plant and 5 MWth slip stream
- Gasification temp: 870-890 °C
- Fluidization gas: O₂ 40-50 %-m and H₂O
- Bed material: Mixture of limestone and sand, 70/30 (50/50)
- Fuel: Wood based biomass (wood chips, bark, forest residues, etc)
- Typical raw gas composition on wet basis:

CO	17 %
CO_2	22 %
H_2	21 %
$C_x^-H_y^*$	7 %
$\hat{H_2O}$	33 %

^{*} Contains components from CH₄ to heavy tars.

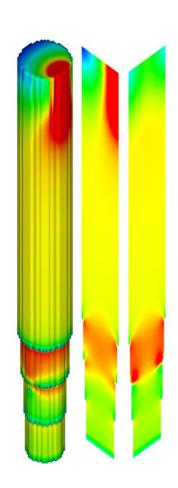
Gas composition can vary to some extent and is affected by process conditions, fuel type and particle size, bed material, etc.

► Gasification: Varkaus 12 MWth O₂-H₂O Demo plant and 5 MWth slip stream

Gasification: Status of gasification technology development

Test runs at Varkaus demonstration plant completed

Complete FT production chain demonstrated successfully


12 MW_{th} O_2 - H_2O gasifier (~9000 h)

5 MW_{th} slip stream (~5500 h)

0.1 MW_{th} gas ultra cleaning and FT synthesis

FT supplier was impressed with regard to the gas quality

- Low pressure (4 bar) design for a commercial size O₂-H₂O gasifier exists, higher pressures under development
- 3D gasification model developed with Lappeenranta University of Technology in use to improve process design
- Commercial size design calculations done (~300 MW)

Tar removal: Syngas quality from biomass gasification

	Entrained Flow	Circulating Fluidized Bed
Methane content	< 0.5%	5-7%
Tar content	~ 0	10 ⁴ mg/Nm ³ max

 Tar: organic compounds with boiling temperature higher than benzene (80°C)

Heavy tar (boiling temperature > 350°C)
 Potential fouling of heat exchangers, filters, etc.

Light tar (i.e. phenol, naphthalene)Condensate contamination

Tar removal: Features of TAR removal processes

Process	Advantages	Disadvantages	Risk
Aqueous Scrubbing	Good efficiencySmooth and trouble-free operation	Tars pass from gas to liquid phaseHigh Capex for WWT	Light tars in the clean syngas
Thermal Cracking	Complete removalChemical energy remains in syngas	 Soot formation High Capex Low thermal efficiency (product used to provide heat) 	■ None
Catalytic Cracking	 Potential complete removal Chemical energy remains in syngas Composition of product gas can be adjusted 	Soot formationCatalyst consumption and costCatalyst disposal due to Ni	Coke formation and catalyst deactivationLow references
Oil Scrubbing	Stability and availabilityChemical energy remains in syngas (tars recycle)High efficiency	 Scrubber/Stripper to remove NH₃, HCl, H₂S High level of filtration at high temperature 	■Naphtalene in the clean syngas: test required

Technology review

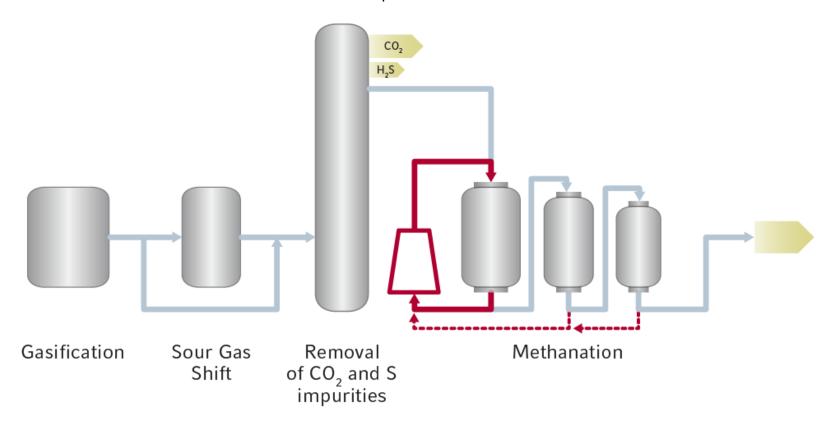
Syngas composition may be adjusted by partial shift to obtain the required H2/CO ratio (depending on Methanation technologies), for example:

> • (H₂-CO₂)/(CO+CO₂) (vol. ratio): 3 **or** • H₂/CO (vol. ratio): 3 **or**

• UNSHIFTED

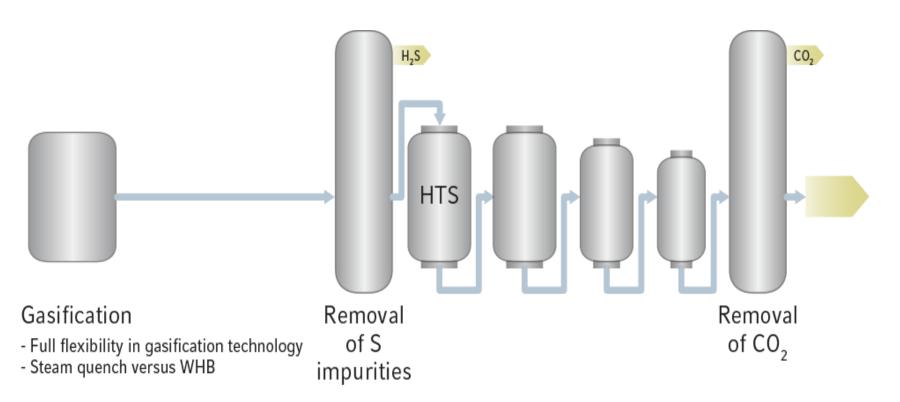
- Cooling of the shifted gas to enter the absorber of the Acid Gas Removal Unit. Physical/Chemical washing to remove sulphur (and CO₂), followed by guard reactor: SNG (methanation) catalysts require a very low (a few ppb) sulphur content
- Reference parameters for unit design:

Sulphur content (before guard bed) 1-2 ppm vol max


• B,T,X,N 5 ppmv max.

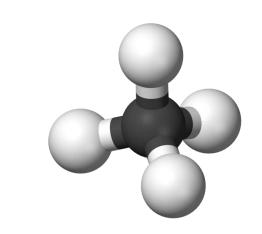
• H₂, CO, CH₄ recovery to be maximized

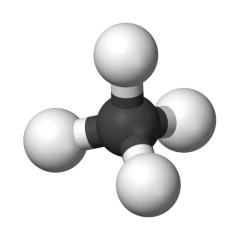
Methanation: Available Technologies


The recycle of CH₄ product to syngas is the standard process. Dilute the CO concentration with CH₄

Methanation: VESTA Technology

The Amec Foster Wheeler VESTA SNG process uses CO₂ and water to control the heat of reaction




Methanation: VESTA Technology Highlights

- No recycle of CH₄ product to the syngas
- Dilute with CO₂
- Dilute with Water

- No Recycle Stream
- Temperature cannot exceed 550°C
 - No uncontrolled reaction possible
- Flexibility of syngas composition
 - No need for sour gas shift

Methanation: VESTA Pilot Plant

Amec Foster Wheeler has signed a cooperation agreement with Clariant International AG ("Clariant") and Wison Engineering Ltd ("Wison Engineering") to build a pilot plant to demonstrate the Amec Foster Wheeler VESTA Substitute Natural Gas (SNG) technology

The pilot plant:

- Designed for a production capacity of 100 Nm³/h of SNG and includes all reactors and control system in order to completely demonstrate a real plant in addition to the verification of the chemical reactions
- Erected in Nanjing, China
- Started up in July 2014; 100% of SNG production, at Chinese natural gas grid specification, reached, and the plant as well as the catalyst performance perfectly in line with expectations

Methanation: VESTA Pilot Plant

Agenda

- ► Introduction and Plant overview
- **►** Technology review
 - Gasification
 - Tar removal
 - Syngas conditioning
 - Methanation
- ► Case study
- **▶** Conclusions

Case study

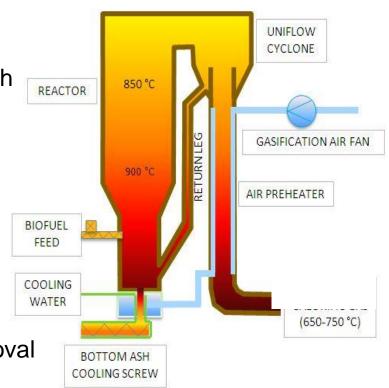
Case study: Biomass to SNG

Main Input Data

Feedstock: Woody materials

Outlet thermal power (SNG): 200 MWth

(or 21,000 Nm³/h)


Plant Configuration

Amec Foster Wheeler CFB Gasifier pressurized and oxygen blown

Catalytic tar reforming

Physical solvent washing for H₂S removal

VESTA SNG Technology

Case study

Case study: Biomass to SNG

ITEM	VALUE	UNIT
Feedstock type	Woody material	
Feedstock flowrate	130	t/h AR
Inlet thermal power	315-330	MW_{th}
Outlet SNG flowrate	21,000	Nm³/h
Outlet Thermal power	200	MW_{th}
Biomass to SNG efficiency (Ther. Power bases, including biomass for power production)	60-6367	%
Total Investment Cost (TIC)	340-370	M€
Specific Total Investment Cost (TIC / Ther. power out)	1,700-1,850	€/kW _{th} SNG

Agenda

- ► Introduction and Plant overview
- **►** Technology review
 - Gasification
 - Tar removal
 - Syngas conditioning
 - Methanation
- Case study
- **▶** Conclusions

Conclusions

- SNG production via biomass gasification is technically feasible; main technologies are available and sufficiently mature for commercial application
- Recently Amec Foster Wheeler assessments showed that a biomassto-SNG plant has the potential to be economically attractive
- Amec Foster Wheeler is strongly committed in this field, being technology leader for the biomass gasification process through its proprietary CFB-based gasification technology and, at the same time as owner, together with Clariant, of a patented and novel SNG production process (VESTA)

amecfw.com

