Page 90 - Impiantistica industriale
P. 90

SUSTAINABLE SOLUTIONS




                            23.  Redlich, O., Kwong, J.N., 1949. On the thermodynamics   26.  Tsang, C.Y., Clancy, P., Calado, J.C.G., Streett, W.B., 1980.
                               of solutions. V. An equation of state. Fugacities of gaseous   Phase equilibria in the H /CH  system at temperatures from
                                                                                          4
                                                                                       2
                               solutions. Chemical Reviews 44(1), 233-244.  92.3 to 180.0 K and pressures to 140 MPa. Chemical En-
                            24.  Johnson, J.K., Zollweg, J.A., Gubbins, K.E., 1993. The   gineering Communications 6(6), 365-383.
                               Lennard-Jones equation of state revisited. Molecular   27.  Spatolisano, E., De Guido, G., Pellegrini, L.A., Calemma, V.,
                               Physics 78(3), 591-618.                  de Angelis, A.R., Nali, M., 2022. Process sensitivity analysis
                            25.  Van Konynenburg, P., Scott, R., 1980. Critical lines and pha-  and techno-economic assessment of hydrogen sulphide to
                               se equilibria in binary van der Waals mixtures. Philosophical   hydrogen via H2S methane reformation. Journal of Cleaner
                               Transactions of the Royal Society of London A: Mathematical,   Production 330, 129889.
                               Physical and Engineering Sciences 298(1442), 495-540.



                           Laura Annamaria Pellegrini

                           Laura Annamaria Pellegrini is Full Professor of Chemical Plants at Politecnico di Milano, where she teaches “Unit
                           Operations of Chemical Plants” to Chemical Engineering students.
                           At the Dipartimento di Chimica, Materiali e Ingegneria Chimica “Giulio Natta” she leads GASP (“Group on Advanced
                           Separation Processes & GAS Processing”), a group involved in research activities and projects regarding process
                           design for separations and reacting systems. The most recent research topics are: CO  capture by chemical/physi-
                                                                                       2
                           cal absorption or by cryogenic techniques, purifi cation of sour gases, H S valorization, downstream separations in
                                                                              2
                           bioprocesses, cost breakdown analysis for hydrogen and ammonia value chains. The focus is both on the process
                           simulation, with particular attention to energy saving, and on the thermodynamic characterization of the systems,
                           by the choice and the proper calibration of Equations of State, mixing rules and methods. Moreover, the “Process
                           Thermodynamics laboratory - PT lab” allows collecting experimental data of fl uid phase equilibria also for strongly
                           non-ideal systems, for which data are missing in the literature.
                           Laura Pellegrini has a signifi cant scientifi c production of more than 200 publications. She is the inventor of patents
                           on the removal of CO  from acid gas and on downstream separations in bioprocesses.
                                          2
                           She has collaborations in Italy and worldwide and has been managing many research contracts between Politecnico
                           di Milano and external companies, mainly Oil and Gas Companies and Engineering groups.

                           Giorgia De Guido


                           Giorgia De Guido is Assistant Professor at Politecnico di Milano, where she teaches “Chemical Processes and
                           Technologies” to Energy Engineering students. She works in the “Group on Advanced Separation Processes & GAS
                           Processing” (GASP) at Dipartimento di Chimica, Materiali e Ingegneria Chimica “Giulio Natta”.
                           Her research activity and scientifi c publications concern thermodynamics, modeling and simulation of separation
                           processes and of reactive systems under both steady state and dynamic conditions. As for thermodynamics, she
                           deals with different types of phase equilibria, including those in the presence of solids, for which calculation programs
                           have been developed for a correct representation of the system. This plays a key role in the study of novel low-tem-
                           perature/cryogenic technologies developed for the purifi cation of high CO -content gases/biogas. Giorgia studies
                                                                               2
                           these technologies, together with conventional and hybrid processes, in order to defi ne the optimal process scheme
                           based on energy and exergy analyses. She is also involved in projects that deal with the study of less conventional
                           processes, such as isotopes separation by cryogenic distillation and separations of products from bioprocesses.


          L’idrogeno e la modellazione termodinamica


          Idrogeno verde, idrogeno blu, idrogeno grigio, … Si sente sempre più frequentemente accostare il nome di questo elemento,
          il primo della tavola periodica, a colori che vengono assegnati per defi nire il modo in cui viene estratto dalle molecole in cui è
          combinato. Come mai?
          L’idrogeno è sicuramente uno dei principali protagonisti della strategia di decarbonizzazione europea: si parla, infatti, di
          “economia dell’idrogeno” per riferirsi a un’economia basata sull’idrogeno come vettore energetico. Con ciò si intende che
          questo elemento può trasportare energia prodotta da diverse fonti a grandi distanze e in grandi quantità. Sono, inoltre,
          numerose le iniziative e i progetti che mirano ad accelerare la diffusione dell’idrogeno nel mix energetico nazionale per
          raggiungere i target italiani ed europei al 2050 di neutralità climatica. Tra i possibili utilizzi dell’idrogeno si candidano le celle a
          combustibile (fuel cells), l’applicazione al settore del trasporto per una mobilità sostenibile, la sua iniezione o blending nella rete
          gas locale.
          Da un punto di vista termodinamico, l’idrogeno può essere considerato un gas ideale a pressioni e temperature non troppo
          elevate ma, quando viene raffreddato o compresso, si comporta come un gas reale. Per una corretta modellazione dei
          processi che coinvolgono l’idrogeno, per esempio la sua liquefazione, è importante selezionare il modello termodinamico che
          meglio ne rappresenti il comportamento. Questo lavoro prende in considerazione diverse equazioni di stato con l’obiettivo di
          valutarne l’accuratezza nel riprodurre il comportamento termodinamico dell’idrogeno puro e di sue miscele con il metano/gas
          naturale.
       84 84  Impiantistica Italiana - Gennaio-Febbraio 2022
   85   86   87   88   89   90   91   92   93   94   95