Page 78 - Impiantistica industriale
P. 78
OPPORTUNITIES
(Endnotes) 25 “Mechanism of Methanol Synthesis on Cu through CO2 and
CO Hydrogenation”; Grabow L. C., Mavrikakis M., ACS CA-
TALYSIS March 2011. p. 365-384
1 HOME - UN Climate Change Conference (COP26) at the SEC 26 “Mechanistic studies of methanol synthesis over Cu from CO/
– Glasgow 2021 (ukcop26.org) CO2/H2/H2O mixtures: The source of C in methanol and the
2 Methanol Institute (The Methanol Industry|Methanol Insti- role of water”, Yang Y., Mims C.A., Mei D.H., Peden C.H.F.,
tute|www.methanol.org) Campbell C.T., Journal of catalysis 2012, 298. p. 10-17
3 https://igpenergy.com/methanol-overview/ 27 Rosetti Marino S.p.A. has deposited a patent application on
4 https://www.methanol.org/the-methanol-industry/ May 2021
5 • MTBE annual production capacity globally 2023 | Statista 28 “Carbon Dioxide Hydrogenation To Form Methanol via a
6 China’s use of methanol in liquid fuels has grown rapidly since Reverse-Water-Gas-Shift Reaction (the CAMERE Process”,
2000 - Today in Energy - U.S. Energy Information Administra- O-S. Joo, K-D Jung, I. Moon, A. Y. Rozovskii, G. I. Lin, S.-H.
tion (EIA) Han, and S-J. Uhm, Ind. Eng. Chem. Res. 1999, 38, 1808-
7 https://www.methanol.org/policy-initiatives/china/ 1812
8 Methanol | Blue Fuel Energy 29 “CAMERE Process for methanol synthesis from CO2 hydro-
9 Sustainability-Methanol-as-Marine-Fuel.pdf (safety4sea.com) genation”, Oh-Shim Joo*, Kwang-Deog Jung and Yonsoo,
10 https://www.wartsila.com/services-catalogue/engine-servic- Jung, Studies in Surface Science and Catalysis 153, S.-E.
es-4-stroke/marine-methanol-conversion Park, J.-S. Chang and K.-W. Lee (Editors), 2004 Elsevier B.V.
11 https://www.man-es.com/marine/strategic-expertise/fu- pp. 67-72
ture-fuels/methanol 30 “Biogas to methanol: A comparison of conversion processes
12 Innovation Outlook Renewable Methanol – Irena -13 involving direct carbon dioxide hydrogenation and via reverse
http://www.shell.com/global/future-energy/natural-gas/gtl/ water gas shift reaction”, S. Ghosha, V. Udayb, A. Giric, S.
acc-gtl-processes.html Srinivasa, Journal of Cleaner Production, Volume 217, 20
14 “Natural gas to synthesis gas-Catalysts and catalytic pro- April 2019, Pages 615-626, https://doi.org/10.1016/j.jcle-
cesses”; K. AAsberg-Petersen et al. in Journal of Natural Gas pro.2019.01.171
Science and Engineering 3 (2011), p. 423-459 31 “Methanation of CO2 and reverse water gas shift reactions on
15 “Steam reforming and chemical recuperation”; Rostrup-Niels- Ni/SiO2 catalysts: the influence of particle size on selectivity
en, Catalysis Today, 2009, 145 , p. 72-75. and reaction pathway”, H. C. Wu, Y. C. Chang, J. H. Wu,a J.
16 “Improve syngas production using auto thermal reforming”, H. Lin, I. K. Linc and C. S. Chen, Catalysis Science & Tech-
Christensen T. S., Primdahl I., Hydrocarbon processing, Inter- nology, Published on 01 July 2015. Downloaded by Univer-
national edition, 1994, 73, p. 39-46 sity of Connecticut on 02/07/2015 10:07:08 ; DOI: 10.1039/
17 “Proven autothermal reforming technology for modern large- c5cy00667h
scale methanol plants”, Christensen T.S., et al. Nitrogen & 32 “Electrified methane reforming: A compact approach to
Syngas International Conference & Exhibition (2014). greener industrial hydrogen production” ; S. T. Wismann, J.
18 “A large-scale benchmark for the CFD modeling of non-cata- S. Engbæk, S. B. Vendelbo, F. B. Bendixen, W. L. Eriksen,
lytic reforming of natural gas based on the Freiberg test plant K. Aasberg-Petersen, C. Frandsen, I. Chorkendorff, P.M.
HP Pox”, Richter, Seifert. et al., Fuel 152 , p. 110-121 Mortensen, Science 364, (2019), 756–759
19 “Numerical simulation of natural gas non-catalytic partial oxi- 33 “Dry reforming of methane powered by magnetic induction”,
dation reformer”, Yueting Xu, Zhenghua Dai et al., Internation- F. Varsano, M. Bellusci, A. Barbera, M. Petrecca, M. Albino,
al Journal of Hydrogen energy 2014, 39 , p. 9149-9157 C. Sangregorio, International Journal of Hydrogen Energy,
20 “Catalytic partial oxidation of natural gas at elevated pressure Volume 44, Issue 38, 9 August 2019, Pages 21037-21044
and low residence time”, Basini L. E., Aasberg-Peteresen K., 34 https://www.cdc.gov/niosh/ershdb/emergencyresponse-
A. Guarinoni, M. Ostberg, Catalysis Today, 2001, 64 , pp. card_29750029.html
9-20 35 https://www.ncbi.nlm.nih.gov/books/NBK482121/
21 “Short Contact Time Catalytic Partial Oxidation (SCT-CPO) for 36 “An Overview of the Technical Implications of Methanol and
Synthesis Gas Processes and Olefins Production”, Basini L. Ethanol as Highway Motor Vehicle Fuels”, Frank Black, SAE
E., Guarinoni A., Industrial & Engineering Chemical Research, Transactions Vol. 100, Section 4: JOURNAL OF FUELS & LU-
2013, pp. 17023-17037 BRICANTS (1991), pp. 1161-1190 (30 pages) Published By:
22 Basini, L., Cimino, R., Wilhelm, J., Impiantistica Italiana, Nov.- SAE International
Dic. (2009) 37 “System safety analysis of hydrogen and methanol vehicle
23 “Natural Gas Catalytic Partial Oxidation: A Way to Syngas and fuels”, A.R. Carpenter, P. C. Hinze, AiChE Process Safe-
Bulk Chemicals Production”; G. Iaquaniello, E. Antonetti, B. ty Progress, 29 November 2004, https://doi.org/10.1002/
Cucchiella, E. Palo, A. Salladini, A. Guarinoni, A. Lainati and L. prs.10041
Basini; www.intechopen.com/chapters/40565, http://dx.doi.
org/10.5772/48708
24 “Thermodynamics and kinetics of low pressure methanol
synthesis”; Skrzypek J., Lachowska M., Grzeisik M., Sloczyn-
ski J., Nowak P., (1995). The Chemical Engineering Journal,
1995, 59 p. 101-108
72 72 Impiantistica Italiana - Gennaio-Febbraio 2022