Page 78 - Impiantistica industriale
P. 78

OPPORTUNITIES






                         (Endnotes)                                 25  “Mechanism of Methanol Synthesis on Cu through CO2 and
                                                                       CO Hydrogenation”; Grabow L. C., Mavrikakis M., ACS CA-
                                                                       TALYSIS March 2011. p. 365-384
                         1   HOME - UN Climate Change Conference (COP26) at the SEC   26  “Mechanistic studies of methanol synthesis over Cu from CO/
                            – Glasgow 2021 (ukcop26.org)               CO2/H2/H2O mixtures: The source of C in methanol and the
                         2   Methanol Institute (The Methanol Industry|Methanol Insti-  role of water”, Yang Y., Mims C.A., Mei D.H., Peden C.H.F.,
                            tute|www.methanol.org)                     Campbell C.T., Journal of catalysis 2012, 298. p. 10-17
                         3    https://igpenergy.com/methanol-overview/  27  Rosetti Marino S.p.A. has deposited a patent application on
                         4    https://www.methanol.org/the-methanol-industry/  May 2021
                         5  • MTBE annual production capacity globally 2023 | Statista  28  “Carbon  Dioxide  Hydrogenation  To  Form  Methanol  via  a
                         6   China’s use of methanol in liquid fuels has grown rapidly since   Reverse-Water-Gas-Shift  Reaction  (the  CAMERE  Process”,
                            2000 - Today in Energy - U.S. Energy Information Administra-  O-S. Joo, K-D Jung, I. Moon, A. Y. Rozovskii, G. I. Lin, S.-H.
                            tion (EIA)                                 Han, and S-J. Uhm, Ind. Eng. Chem. Res. 1999, 38, 1808-
                         7   https://www.methanol.org/policy-initiatives/china/  1812
                         8   Methanol | Blue Fuel Energy            29   “CAMERE Process for methanol synthesis from CO2 hydro-
                         9   Sustainability-Methanol-as-Marine-Fuel.pdf (safety4sea.com)  genation”,  Oh-Shim  Joo*,  Kwang-Deog  Jung  and  Yonsoo,
                         10  https://www.wartsila.com/services-catalogue/engine-servic-  Jung,  Studies  in  Surface  Science  and  Catalysis  153,  S.-E.
                            es-4-stroke/marine-methanol-conversion     Park, J.-S. Chang and K.-W. Lee (Editors), 2004 Elsevier B.V.
                         11  https://www.man-es.com/marine/strategic-expertise/fu-  pp. 67-72
                            ture-fuels/methanol                     30  “Biogas to methanol: A comparison of conversion processes
                         12  Innovation Outlook Renewable Methanol – Irena -13   involving direct carbon dioxide hydrogenation and via reverse
                            http://www.shell.com/global/future-energy/natural-gas/gtl/  water gas shift reaction”, S. Ghosha, V. Udayb, A. Giric, S.
                            acc-gtl-processes.html                     Srinivasa,  Journal  of  Cleaner  Production,  Volume  217,  20
                         14  “Natural gas to synthesis gas-Catalysts and catalytic pro-  April 2019, Pages 615-626, https://doi.org/10.1016/j.jcle-
                            cesses”; K. AAsberg-Petersen et al. in Journal of Natural Gas   pro.2019.01.171
                            Science and Engineering 3 (2011), p. 423-459  31  “Methanation of CO2 and reverse water gas shift reactions on
                         15  “Steam reforming and chemical recuperation”; Rostrup-Niels-  Ni/SiO2 catalysts: the influence of particle size on selectivity
                            en, Catalysis Today, 2009, 145 , p. 72-75.  and reaction pathway”, H. C. Wu, Y. C. Chang, J. H. Wu,a J.
                         16  “Improve syngas production using auto thermal reforming”,   H. Lin, I. K. Linc and C. S. Chen, Catalysis Science & Tech-
                            Christensen T. S., Primdahl I., Hydrocarbon processing, Inter-  nology, Published on 01 July 2015. Downloaded by Univer-
                            national edition, 1994, 73, p. 39-46       sity of Connecticut on 02/07/2015 10:07:08 ; DOI: 10.1039/
                         17  “Proven autothermal reforming technology for modern large-  c5cy00667h
                            scale methanol plants”, Christensen T.S., et al. Nitrogen &   32  “Electrified methane reforming: A compact approach to
                            Syngas International Conference & Exhibition (2014).  greener industrial hydrogen production” ; S. T. Wismann, J.
                         18  “A large-scale benchmark for the CFD modeling of non-cata-  S. Engbæk, S. B. Vendelbo, F. B. Bendixen, W. L. Eriksen,
                            lytic reforming of natural gas based on the Freiberg test plant   K.  Aasberg-Petersen,  C.  Frandsen,  I.  Chorkendorff,  P.M.
                            HP Pox”, Richter, Seifert. et al., Fuel 152 , p. 110-121  Mortensen, Science 364, (2019), 756–759
                         19  “Numerical simulation of natural gas non-catalytic partial oxi-  33  “Dry reforming of methane powered by magnetic induction”,
                            dation reformer”, Yueting Xu, Zhenghua Dai et al., Internation-  F. Varsano, M. Bellusci, A. Barbera, M. Petrecca, M. Albino,
                            al Journal of Hydrogen energy 2014, 39 , p. 9149-9157  C.  Sangregorio,  International  Journal  of  Hydrogen  Energy,
                         20  “Catalytic partial oxidation of natural gas at elevated pressure   Volume 44, Issue 38, 9 August 2019, Pages 21037-21044
                            and low residence time”, Basini L. E., Aasberg-Peteresen K.,   34  https://www.cdc.gov/niosh/ershdb/emergencyresponse-
                            A.  Guarinoni,  M.  Ostberg,  Catalysis  Today,  2001,  64  ,  pp.   card_29750029.html
                            9-20                                    35  https://www.ncbi.nlm.nih.gov/books/NBK482121/
                         21  “Short Contact Time Catalytic Partial Oxidation (SCT-CPO) for   36  “An Overview of the Technical Implications of Methanol and
                            Synthesis Gas Processes and Olefins Production”, Basini L.   Ethanol as Highway Motor Vehicle Fuels”, Frank Black, SAE
                            E., Guarinoni A., Industrial & Engineering Chemical Research,   Transactions Vol. 100, Section 4: JOURNAL OF FUELS & LU-
                            2013, pp. 17023-17037                      BRICANTS (1991), pp. 1161-1190 (30 pages) Published By:
                         22   Basini, L., Cimino, R., Wilhelm, J., Impiantistica Italiana, Nov.-  SAE International
                            Dic. (2009)                             37  “System safety analysis of  hydrogen and methanol  vehicle
                         23  “Natural Gas Catalytic Partial Oxidation: A Way to Syngas and   fuels”, A.R. Carpenter, P. C. Hinze, AiChE Process Safe-
                            Bulk Chemicals Production”; G. Iaquaniello, E. Antonetti, B.   ty  Progress,  29  November  2004,  https://doi.org/10.1002/
                            Cucchiella, E. Palo, A. Salladini, A. Guarinoni, A. Lainati and L.   prs.10041
                            Basini;  www.intechopen.com/chapters/40565,  http://dx.doi.
                            org/10.5772/48708
                         24  “Thermodynamics and kinetics of low pressure methanol
                            synthesis”; Skrzypek J., Lachowska M., Grzeisik M., Sloczyn-
                            ski J., Nowak P., (1995). The Chemical Engineering Journal,
                            1995, 59 p. 101-108








       72 72  Impiantistica Italiana - Gennaio-Febbraio 2022
   73   74   75   76   77   78   79   80   81   82   83